Friday, December 2, 2022

Insilico Medicine Enters Research Collaboration with the University of Zurich

To apply Insilico's generative Artificial Intelligence platform for the discovery of potential therapeutics for Cystinosis

The MIKADO group, a translational team at the UZH focused on generating evidence-driven insights to understand and treat rare inherited kidney diseases, and Insilico Medicine, an end-to-end Artificial Intelligence (AI)-driven drug discovery company, today announced a research and development collaboration designed to accelerate the discovery of transformative novel therapeutics for cystinosis. The duration of the initial research collaboration will be one year.

Specifically, the MIKADO group will leverage its multi-omics databank obtained from preclinical models and cystinosis-based cell models by using Insilico’s comprehensive novel target discovery AI platform PandaOmics to identify cellular and molecular pathways that drive life-threatening complications in cystinosis patients. The MIKADO group will analyse disease-relevant targetable pathways and utilize Insilico’s proprietary algorithms to generate libraries of small molecule compounds that are expected to be validated in preclinical models and cystinosis cell systems using disease-relevant screening technologies developed by the MIKADO group at the UZH.

“I am thrilled by the collaboration between MIKADO and Insilico. With the power of artificial intelligence-driven, systems biology-based drug discovery, we intend to accelerate the analysis and discovery of drug targets, with the goal of bringing novel breakthrough medicines to cystinosis patients while decreasing costs and increasing probabilities of success,” said Olivier Devuyst, MD, Ph.D., head of MIKADO group at the UZH.

“Cystinosis is a commonly neglected disease with large unmet need. We are pleased to partner with MIKADO at the UZH combining the best of PandaOmics target discovery AI and human intelligence for the potential benefit of cystinosis patients worldwide,” said Alex Zhavoronkov Ph.D., CEO of Insilico Medicine.

Using innovative preclinical models and disease-relevant phenotype screening, we aim to validate novel drug targets for diseases which no cure has been found. Ultimately, we want to improve the quality of life for those affected by the disease and bring tangible hope to thousands of cystinosis patients around the world,” said Alessandro Luciani Ph.D., senior scientist and team leader at MIKADO.

Cystinosis—one of a family of approximately 70 rare inborn diseases of the metabolism known as lysosomal storage diseases that collectively affect 1 in 5,000 live births—is caused by inactivating mutations in the CTNS gene encoding the proton-driven transporter cystinosin, which exports cystine from the lysosome. Its functional loss leads cystine to accumulate within the lysosome of tissues across the body, culminating in severe multiorgan dysfunctions that affect primarily the brain, eyes, liver, muscles, pancreas, and kidneys. Fanconi syndrome is the first manifestation of cystinosis, usually presenting within the first year of life and characterized by the early and severe dysfunction of the kidney proximal tubule, most often complicated by chronic kidney disease and life-threatening manifestations. In their second to third decade of life, patients with cystinosis can also develop hypothyroidism, hypogonadism, diabetes, myopathy, and deterioration of fine vision and decline of the central nervous system. Beyond supportive care, the only available FDA-approved strategy to counteract cystine storage is the oral administration of cysteamine, which allows cystine to exit from the lysosomes. However, cysteamine treatment is hampered by side effects and poor tolerance, and it does not prevent nor treat PT dysfunction and kidney disease. Therefore, there is an urgent need to develop novel therapeutics for this devastating disease.

Medical Device News Magazine
Our publication is dedicated to bringing our readers the latest medical device news. We are proud to boast that our subscribers include medical specialists, device industry executives, investors, and other allied health professionals, as well as patients who are interested in researching various medical devices. We hope you find value in our easy-to-read publication and its overall purpose and objectives! Medical Device News Magazine is a division of PTM Healthcare Marketing, Inc. Pauline T. Mayer is the managing editor.

By using this website you agree to accept Medical Device News Magazine Privacy Policy