MedShape Secures $2.6M DOD Development Grant for Novel NiTiNOL Dynamic Compression Devices

MedShape, Inc., today announced that it has received a Technology/Therapeutic Development Award funded by the Department of Defense Peer-Reviewed Medical Research Program (PRMRP) to assist in the research and development of a dynamic compression fusion device using superelastic nickel titanium (NiTiNOL) for use in diabetic foot limb salvage surgery.  Medshapre reports the funding award from PRMRP includes $2.6M to complete the research milestones over the next 3 years.

Nearly 5 million military Veterans suffer from diabetes mellitus with 15,000 of those also diagnosed with Charcot Foot,1,2 a painless, progressive, disease that results in the breakdown of the bones in the midfoot. Diabetic patients reportedly are 10-20 times more at risk of needing an amputation compared to non-diabetics4. In addition, those who undergo an amputation are 3 times more likely to die within 1 year of surgery compared with patients who are successfully treated through other surgical options. Given the high mortality rate, orthopedic surgeons strive to salvage the limb with alternative surgical treatments. Currently, intramedullary (IM) screws are placed across the midfoot in an attempt to stabilize and realign the foot. However, these “beaming” devices undergo repetitive and significant loading, with 25-60% of the current devices experiencing failure, often due to loss of compressive force, implant loosening and axial migration.3,4

Through the support of the DOD research grant, MedShape, in collaboration with limb salvage specialists Dan Latt, MD/Ph.D. (University of Arizona) and Naohiro Shibuya, DPM (Texas A&M College of Medicine), will explore the development of novel devices that maintain dynamic compression and effectively stabilize the foot in an effort to preserve the limb in the diabetic Charcot Veteran population. By leveraging MedShape’s patented NiTiNOL platform technology, devices can be designed to adapt and respond to specific changes in the biological environment that occur during healing while also effectively load-sharing with the bone to reduce stress risers on the device that lead to device failure and additional surgery.

“Standard midfoot fusion devices should be robust enough to withstand weight-bearing and also able to apply compression for bone-on-bone healing. However, standard devices don’t work well for diabetic patients with Charcot neuroarthropathy because their midfoot bones have deteriorated, which puts them at risk for amputation. Surgeons need a better solution, and we believe that our dynamic compression technology can be developed to address this dire need”, said David Safranski, Ph.D., Director of Basic Research at MedShape, Inc. “Due to MedShape’s extensive experience in smart (NiTiNOL-based) orthopedic devices, we are uniquely qualified to address this clinical challenge with our Veterans. The PRMRP’s support is critical for our team to develop these next-generation medical devices.”

The clinical use of MedShape’s internal NiTiNOL technology has already been successfully demonstrated through the company’s DynaNailÒ TTC Fusion System. Ten peer-reviewed publications on the DynaNail report significantly improved clinical outcomes when treating high-risk patient populations such as diabetics and those with Charcot neuroarthropathy,5-7 suggesting the utility of the technology in other challenging fusion applications. Last month, MedShape received a small business innovation research grant to develop novel MTP replacement implants, thus reinforcing MedShape’s continued commitment to advancing biomaterials research to develop state-of-the-art medical solutions.


References

1Franklin H, Rajan M, Tseng CL, Pogach L, Sinha A, Mph M. Cost of lower-limb amputation in U.S. veterans with diabetes using health services data in fiscal years 2004 and 2010. Journal of rehabilitation research and development 2014; 51(8): 1325-30.

2Ahn P. Veteran Population Projection Model 2016 Executive Summary. In: Affairs DoV, editor.; 2017.

3.Eschler A, Wussow A, Ulmar B, Mittlmeier T, Gradl G. Intramedullary medial column support with the Midfoot Fusion Bolt (MFB) is not sufficient for osseous healing of arthrodesis in neuroosteoarthropathic feet. Injury 2014; 45 Suppl 1: S38-43.

4Butt DA, Hester T, Bilal A, Edmonds M, Kavarthapu V. The medial column Synthes Midfoot Fusion Bolt is associated with unacceptable rates of failure in corrective fusion for Charcot deformity. Bone & Joint Journal 2015; 97-B(6): 809.

5Dupont KM, Shibuya N, Bariteau JT. Tibiotalocalcaneal Arthrodesis with Intramedullary Nails – Mechanobiological Background and Evolution of Compressive Technology. Global J of Orthopedics Research, 2019. 1(5): 1-8.

6Steele JR, Easley ME, Nunley JA, Adams SB, et al. Comparison of Tibiotalocalcaneal Arthrodeses Using a Sustained Dynamic Compression Nail Versus Nondynamized Nails. Foot & Ankle Spec, 2020. 13(3): 193-200.

7Ford SE, Kwon JY, Ellington K. Tibiotalocalcaneal Arthrodesis Utilizing a Titanium Intramedullary Nail With an Internal Pseudoelastic Nitinol Compression Element: A Retrospective Case Series of 33 Patients. J Foot Ankle Surg, 2019. 58(2): 266-272.

SourceMedShape
Medical Device News Magazinehttps://infomeddnews.com
Medical Device News Magazine provides breaking medical device / biotechnology news. Our subscribers include medical specialists, device industry executives, investors, and other allied health professionals, as well as patients who are interested in researching various medical devices. We hope you find value in our easy-to-read publication and its overall objectives! Medical Device News Magazine is a division of PTM Healthcare Marketing, Inc. Pauline T. Mayer is the managing editor.

More News!

Noze states the grant will fund a groundbreaking clinical study aimed at detecting TB in high-burden countries, using the company's DiagNoze® — a handheld breathalyzer designed for the real-time detection and screening of various medical conditions, including infectious diseases such as TB.
Research teams led by a faculty member in Purdue University’s College of Engineering will use two grants from the National Eye Institute totaling $6.7 million to further develop specialized smart soft contact lenses that continuously monitor or treat chronic ocular diseases like glaucoma, corneal neovascularization and dry eye syndromes.
The series B funding round saw participation from venture capital firms Blume Ventures, Steadview Capital, Nexus Venture Partners, Alpha Wave and Zomato founder Deepinder Goyal. Ultrahuman will deploy the funds towards building further manufacturing capacity and deeper research in the health tracking space notes Ultrahuman.
Bone Health Technologies Bone Health Technologies (BHT), a health technology innovator developing breakthrough non-invasive solutions for bone health, today announced the company has raised a...
Howard Robin, President and Chief Executive Officer of Nektar Therapeutics: "We are pleased to bring on TCGX as a new high-quality, long-term investor in Nektar as we advance rezpegaldesleukin through our Phase 2b studies in atopic dermatitis and alopecia areata. We are on track to report topline data from these studies in the first half of 2025, which will represent significant inflection points for Nektar. Today's financing further bolsters our financial position and extends the company's cash runway well into the third quarter of 2026."

By using this website you agree to accept Medical Device News Magazine Privacy Policy

Exit mobile version