Newly published data demonstrates bone in-growth potential of Stryker’s 3-D Printed Titanium Cage was announced today by Stryker.  Stryker reports the study was published in the July issue of The Spine Journal.

The purpose of the study was to compare the bone in-growth and biomechanical differences of interbody cages with various material technologies in an ovine lumbar interbody fusion model. The cages involved in this study included traditional PEEK cages, plasma-sprayed titanium-coated PEEK cages, and Stryker’s 3D-printed porous Tritanium cages.1

The results demonstrated that the Tritanium cages exhibited significantly greater total bone volume within the graft window at both 8 and 16 weeks compared to the PEEK cages (p<0.01).1 Tritanium cages also were the only cages that showed a decrease in range of motion and an increase in stiffness across all three loading directions (axial rotation, flexion-extension, and lateral bending) between the 8-week and 16-week time points (p-value ≤0.01). 1

“The results of this study provide an evidence-based approach to decision-making regarding interbody materials for spinal fusion, as there is significant variability in the materials commonly used for interbody cages in spine surgery,” said Sigurd H. Berven, M.D., orthopaedic surgeon at the University of California, San Francisco. “The study showed the potential for bone in-growth into and around the Tritanium cages.”

According to Michael Carter, vice president and general manager of Stryker’s Spine division, 3D printing, also known as additive manufacturing, allows the creation of a material with “precisely randomized”2 porous structures designed to mimic bone.2 “Stryker’s proprietary Tritanium Technology, a novel, highly porous titanium alloy material designed for bone in-growth and biological fixation, is based on additive manufacturing techniques for orthopaedic surgery pioneered by Stryker over 15 years ago,” Carter said. “This important study reinforces the value of our growing line of Tritanium interbody cages and demonstrates Stryker’s commitment to bringing the latest in advanced technologies to our customers.”

The study titled “Bony Ingrowth Potential of 3D Printed Porous Titanium Alloy: A Direct Comparison of Interbody Cage Materials in an In Vivo Ovine Lumbar Fusion Model,” can be accessed here.


References

  1. McGilvray, Kirk C., et al. Bony ingrowth potential of 3D printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model, Spine J. 2018; Volume 18, Issue 7, 1250-1260.
  2. Karageorgiou V, Kaplan D. (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26, 5474-5491.