Artificial Joints: Engineers Are Involved In a £4 Mil Research Project to Investigate Ways of Developing a New Generation that Last Longer

February 22, 2021

Artificial Joints: Engineers are involved in a £4 million research project to investigate ways of developing a new generation of artificial joints that last longer, produce fewer side effects, and are better suited for younger patients.

The international collaboration, led by the University of Leeds and funded by the EU’s Horizon 2020 program, will focus on improved design and testing to reduce the chance that the implants develop faults and fail, or cause orthopedic complications.

More than 100,000 artificial joints are fitted every year in the UK. The devices have improved the quality of life for hundreds of thousands of people. But over the last two decades, problems have emerged with implants that have been painful, worked loose or deposited microscopic debris into the tissue surrounding the joint, causing severe inflammation.

Failure rates within ten years of an artificial joint is fitted range from a few percent to greater than 30 percent, depending on the type of device.

Engineers believe problems have arisen with some implants because of weaknesses in the way they were tested prior to being approved for use. The testing failed to evaluate real-world wear and tear.

Professor Richard Hall, from the School of Mechanical Engineering at Leeds, is the project’s principal investigator. He said: “Total hip and knee replacement is now an established technique that has been hugely successful. Implant technology can improve lives.

“But over the last 20 years, there have been high-profile problems with some implants failing or causing complications which require patients to have repeat surgery.

“In addition, surgeons are fitting new hips and knees to patients who are younger, heavier, and more active. That means the devices are under even greater stress. They also want to fit artificial joints in ankles and fingers and they have higher failure rates.

“To overcome these challenges, manufacturers need more accurate testing and better design. We are working with industrial, clinical, and academic partners to make that happen, to produce artificial joints that are fit for purpose.”

The researchers hope to use advanced computer simulation and laboratory tests that capture a more accurate picture of implants’ performance in a range of human activities including running, walking, jumping, and stumbling.

Better testing will inform design that meets the functional requirements of the implants.

In a break with previous testing methods, the researchers want to develop “in situ” analysis, so the performance of the device is monitored while it is being subject to mechanical testing. That will result in earlier identification – and rectification – of problems.

The main project partners are ETH Zurich, Uppsala University, and Lulea Technical University, both in Sweden and Imperial College London. The project will also train early career researchers for the medical devices industry.

Hot this week

Cartessa Aesthetics Partners with Classys to Bring EVERESSE to the U.S. Market

Classys, which is listed on the KOSDAQ, is one of South Korea's most distinguished aesthetic technology manufacturers, with devices distributed in 80+ markets globally. This partnership marks Classys's official entry into the American marketplace, with Cartessa Aesthetics as the exclusive distributor for EVERESSE, launched under the Volnewmer brand in current global markets.

Stryker Launches Next-Generation of SurgiCount+

Now integrated with Stryker's Triton technology, SurgiCount+ addresses two key challenges: retained surgical sponges and blood loss assessment. Integrating these previously separate digital solutions provides the added benefit of a more efficient, streamlined workflow for hospitals notes Stryker.

Nevro Receives CE Mark In Europe for It’s HFX iQ™ Spinal Cord Stimulation System

Nevro notes HFX iQ is the first and only SCS system with artificial intelligence (AI) technology that combines high-frequency (10 kHz) therapy built on landmark evidence that uses ongoing cloud data insights to deliver personalized pain relief

Recor Medical Reports: CMS Grants Distinct TPT Device Code and Category to Recor Medical for Ultrasound Renal Denervation

The approval of TPT offers incremental reimbursement payments for outpatient procedures performed with ultrasound renal denervation for Medicare fee-for-service beneficiaries. It becomes effective January 1, 2025, and is expected to remain effective for up to three years notes Recor Medical.

Jupiter Endovascular Reports | 1st U.S. Patient Treated with Jupiter Shape-shifting Thrombectomy Device

“Navigation challenges during endovascular procedures are often underappreciated and have led to under-adoption of life-saving procedures, such as pulmonary embolectomy. We have purpose-built our Endoportal Control technology to solve these issues and make important endovascular procedures accessible to more clinicians and their patients who can benefit from them,” said Carl J. St. Bernard, Jupiter Endovascular CEO. “This first case in the U.S. could not have gone better, and appears to validate the safety and performance we are seeing in our currently-enrolling European SPIRARE I study.”