RSNA Reports: Brain Connectivity on MRI Predicts Parkinson’s Disease Progression

RSNA reports: The structural and functional organization of the brain as shown on MRI can predict the progression of brain atrophy in patients with early-stage, mild Parkinson’s disease, according to a study published today in Radiology, a journal of the Radiological Society of North America (RSNA).

Parkinson’s disease is a progressive disorder characterized by tremors, slowness of movement or rigidity. Symptoms worsen over time and may include cognitive impairment and sleep problems. The disease affects more than 8.5 million people worldwide, and prevalence has doubled in the past 25 years, according to the World Health Organization (WHO).

One of the distinctive features of Parkinson’s disease is the presence of altered versions of the protein alpha-synuclein in the brain. Normally present in the brain, this protein accumulates as misfolded clumps inside nerve cells in Parkinson’s disease, forming structures known as Lewy bodies and Lewy neurites. These clumps spread to other brain regions, damaging nerves.

Researchers wanted to see if mapping the structural and functional connections across the brain could be used to predict patterns of atrophy spread in patients with mild Parkinson’s disease.

They used MRI data from 86 patients with mild Parkinson’s disease and 60 healthy control participants to generate the connectome, a structural/functional map of the brain’s neural connections. The researchers used the connectome to develop an index of disease exposure.

Disease exposure at one year and two years was correlated with atrophy at two years and three years post-baseline. Models including disease exposure predicted gray matter atrophy accumulation over three years in several areas of the brain.

“In the present study, brain connectome, both structural and functional, showed the potential to predict progression of gray matter alteration in patients with mild Parkinson’s disease,” said study coauthor Federica Agosta, M.D., Ph.D., associate professor of neurology at the Neuroimaging Research Unit of IRCCS San Raffaele Scientific Institute in Milan, Italy.

The findings support the theory that functional and structural connections between brain regions may significantly contribute to Parkinson’s disease progression.

“The loss of neurons and accumulation of abnormal proteins can disrupt neural connections, compromising the transmission of neural signals and the integration of information across different brain regions,” Prof. Agosta said.

The study results point to a role for MRI in intervention trials to prevent or delay the disease progression—especially when individual patient information is incorporated into the model. Since Parkinson’s disease progression likely differs among individuals, future models should consider different starting conditions and incorporate individual-specific information for optimal effectiveness, according to Prof. Agosta.

“We believe that understanding the organization and dynamics of the human brain network is a pivotal goal in neuroscience, achievable through the study of the human connectome,” she said. “The idea that this approach could help identify different biomarkers capable of modulating Parkinson’s disease progression inspires our work.”

SourceRSNA

Hot this week

Cartessa Aesthetics Partners with Classys to Bring EVERESSE to the U.S. Market

Classys, which is listed on the KOSDAQ, is one of South Korea's most distinguished aesthetic technology manufacturers, with devices distributed in 80+ markets globally. This partnership marks Classys's official entry into the American marketplace, with Cartessa Aesthetics as the exclusive distributor for EVERESSE, launched under the Volnewmer brand in current global markets.

Stryker Launches Next-Generation of SurgiCount+

Now integrated with Stryker's Triton technology, SurgiCount+ addresses two key challenges: retained surgical sponges and blood loss assessment. Integrating these previously separate digital solutions provides the added benefit of a more efficient, streamlined workflow for hospitals notes Stryker.

Nevro Receives CE Mark In Europe for It’s HFX iQ™ Spinal Cord Stimulation System

Nevro notes HFX iQ is the first and only SCS system with artificial intelligence (AI) technology that combines high-frequency (10 kHz) therapy built on landmark evidence that uses ongoing cloud data insights to deliver personalized pain relief

Recor Medical Reports: CMS Grants Distinct TPT Device Code and Category to Recor Medical for Ultrasound Renal Denervation

The approval of TPT offers incremental reimbursement payments for outpatient procedures performed with ultrasound renal denervation for Medicare fee-for-service beneficiaries. It becomes effective January 1, 2025, and is expected to remain effective for up to three years notes Recor Medical.

Jupiter Endovascular Reports | 1st U.S. Patient Treated with Jupiter Shape-shifting Thrombectomy Device

“Navigation challenges during endovascular procedures are often underappreciated and have led to under-adoption of life-saving procedures, such as pulmonary embolectomy. We have purpose-built our Endoportal Control technology to solve these issues and make important endovascular procedures accessible to more clinicians and their patients who can benefit from them,” said Carl J. St. Bernard, Jupiter Endovascular CEO. “This first case in the U.S. could not have gone better, and appears to validate the safety and performance we are seeing in our currently-enrolling European SPIRARE I study.”
Exit mobile version