DoD partners with Detect-Ion to develop Point-of-Care Breath Diagnostics for Early Detection of Infected Warfighters

Defense Innovation Unit (DIU) and the Defense Threat Reduction Agency (DTRA) want to use Detect-Ion's chip scale mass spectrometry to analyze exhaled human breath in real time for early warning of infections to enhance mission readiness.

The recent COVID-19 pandemic has highlighted the need to rapidly detect infected humans to intervene early before severe conditions develop and to mitigate the spread of infections across a larger population. The ideal diagnostics approach should be painless (non-invasive), rapid, cost-effective, accurate, and should be versatile to detect multiple infectious pathogens, in some cases pre-symptomatically (even before the symptoms are visible). This diagnostics capability when applied to United States Department of Defense (DoD) warfighters would ensure mission readiness in austere environments, where providing adequate medical personnel and/or traditional diagnostics labs can be challenging. With this vision, DoD’s DIU teamed up with DTRA and has awarded an Other Transaction (OT) contract to Detect-Ion to develop such a Point-of-Care (PoC) Breath Diagnostics.

Detect-Ion’s PoC Breath Diagnostics project called “CLARION”, leverages a disruptive chip-scale mass spectrometry technology originally developed via prior high-risk/high-gain IARPA and DARPA investments to detect trace chemical signatures in ambient air for strategic intelligence collection and early warning systems, respectively. “This is a classic example of dual use technology which we plan to adapt for human breath analysis,” said Dr. Ashish Chaudhary, Founder/CEO of Detect-Ion, and the principal investigator of the CLARION project. “Typical exhaled human breath contains nitrogen, oxygen, carbon dioxide, carbon monoxide, argon, etc., and high amounts of water vapor. In addition to those major components, it contains a complex mixture of 100s of trace-level volatile organic compounds (VOCs) in the parts-per-million to parts-per-trillion range. There’s credible science that demonstrates that relative concentrations of some of these VOCs can get perturbed due to a host’s response to a certain infection, and this approach has been successfully demonstrated in lab-scale studies to discriminate infected humans from a healthy population. Our objective in CLARION is to leverage this science to establish the relevant VOC biomarkers, adapt our portable sensor hardware for exhaled breath analysis, and apply machine learning/artificial intelligence detection algorithms to enable near-real-time PoC infection screening.

If successful, a single CLARION device could run up to 160 breath analyses per day, at a fraction of the cost of rapid PCR tests. This could potentially offer high-throughput screening of large populations in a variety of densely populated military and civilian settings, such as offshore deployed battalions, military installations, airports, shopping malls, hospitals, concerts, etc. The project is planned over three years and allows DoD to pursue follow-on production if the pilot project succeeds in addressing the program metrics.

Hot this week

Avery Dennison Medical Introduces Ipdated SilFoam Lite: Sustainability, MDR Certification & Performance Improvements

The newly enhanced SilFoam Lite delivers superior efficiency and reliability, bringing improved fluid handling capabilities and improved tack. These improvements make the product ideal for customers seeking quality, high-performance solutions in wound care notes Avery Dennison Medical.

Voluntary Recall Notifying Medtronic Insulin Pump Users of Potential Risks of Shortened Pump Battery Life

Medtronic plc voluntarily issued a field action starting on July 31, 2024, notifying global customers of its MiniMedâ„¢ 600 series or 700 series insulin pumps to follow their pump's built-in alerts and alarms for battery status and to contact Medtronic if they observe changes in the battery life of their pump

Medtronic Expands AiBLE Spine Surgery Ecosystem with New Technologies and Siemens Healthineers Partnership

New advancements in the AiBLE Spine Surgery ecosystem build upon the company's commitment to procedural innovation and execution

Axlab, Danish Medtech Pioneer, expands to US with Advanced Robotic Tissue Sectioning for Pathology Laboratories

Kris Rokke, National Sales Director for Axlab in the US. "My team and I are extremely excited and honored about this unique opportunity to also offer this advanced technology to labs across the US and thus contribute to the pathology labs of tomorrow."

Spartan Medical Broadens Single-Use Sterile Instrument Portfolio to Improve Outcomes, Increase Efficiency, and Generate Cost Savings

Spartan Medical products portfolio of single-use, sterile med tech includes micro and minor surgical convenience kits, kerrison rongeurs, spinal and general surgical retractors, dural repair kits, synthetic biologics, and a wide range of orthopedic pre-sterilized implants and devices.