Biomechanical Evaluation of Novel Posterior Approach to SI Joint Fusion Yields Statistically Significant Results

Cadaveric study reveals PainTEQ's LinQ implant provides the ideal environment for durable patient outcomes

A biomechanical evaluation of the novel LinQ device revealed statistically significant fixation of the sacroiliac (SI) joint. Developed by Tampa-based medical device company, PainTEQ, the LinQ SI Joint Stabilization System is a minimally invasive procedure in which a surgeon inserts a small, single patented implant into the SI joint. The results of this study provided validation for the novel system, showing that LinQ reduces range of motion (ROM) in all motion planes of the SI joint, providing an ideal environment for long-term fusion.

“We are thrilled to share the work of our investigators on this landmark biomechanical study on the direct fixation effects of LinQ,” said Dawood Sayed M.D., Professor of Anesthesiology and Pain Medicine at The University of Kansas Medical Center and one of the study’s key investigators. “High quality biomechanical publications are critical for validating these surgical techniques across the interventional community.”

Natural degenerative changes of the SI joint can lead to chronic low back pain as movement in the joint impinges on surrounding nerves. This biomechanical evaluation studied the effectiveness of LinQ in reducing the SI joint’s ROM, which in turn, would reduce pressure on surrounding nerves.

“As a physician, we have several products and techniques available for sacroiliac fusion, but LinQ currently stands alone in having superior biomechanical outcomes backed by a high-quality peer-reviewed publication to support its use,” Dr. Sayed said.

During their research, investigators measured the total ROM using an optical tracking system before and after surgically implanting LinQ. The results revealed that LinQ significantly reduced ROM in flexion/extension, axial rotations, and lateral bends, resulting in increased multiplanar stability. Additionally, LinQ shifted the center of rotation to the implant’s location, ensuring little to no micromotion at the implantation site.

“The biomechanical stability of the LinQ procedure has demonstrated comparable results to the published lateral approach evidence,” said Kasra Amirdelfan, M.D., another one of the study’s key investigators. “The results of this study underscore LinQ’s posterior approach as a potential new standard for patients due to its minimally invasive nature and more tolerable post-operative period.”

Dr. Amirdelfan goes on to say, “The biomechanical evidence, the upcoming prospective study results, and our own clinical experience clearly show PainTEQ’s commitment to improving patient outcomes through evidence-based medicine.”

Delivering on their promise of high-quality clinical data, PainTEQ plans to release a comparative biomechanical analysis in the near future to showcase the benefits of a posterior approach to SI joint fusion over the traditional lateral technique.

“Thank you to our physician investigators for their commitment to producing these important publications,” said Shanth Thiyagalingam, Chief Commercial Officer at PainTEQ. “With our continued dedication to clinical data, the compelling body of evidence for the LinQ system continues to grow. This ultimately allows more patients to benefit from the outstanding outcomes of the LinQ system achieved through its minimally invasive, patient-centric approach.”

Those interested in being the first to know about PainTEQ’s upcoming studies can follow the company on LinkedIn: www.linkedin.com/company/painteq/.

About PainTEQ:  PainTEQ was built to bring interventional procedures to the market. Working with pain management specialists to help reduce and eliminate SI joint dysfunction, PainTEQ’s LinQ therapy aims to immediately provide clinical benefits to individuals living with incapacitating lower back pain through a minimally invasive outpatient procedure.

About LinQ: The LinQ SI Joint Stabilization System provides patients with a minimally invasive option to combat pain. After a thorough diagnostic process, physicians may help alleviate, and in many cases eliminate, chronic pain by placing a single LinQ allograft into the SI Joint. With its large graft window, this single implant helps create an ideal environment for long-term fusion.

SourcePainTEQ

Hot this week

Jupiter Endovascular Reports | 1st U.S. Patient Treated with Jupiter Shape-shifting Thrombectomy Device

“Navigation challenges during endovascular procedures are often underappreciated and have led to under-adoption of life-saving procedures, such as pulmonary embolectomy. We have purpose-built our Endoportal Control technology to solve these issues and make important endovascular procedures accessible to more clinicians and their patients who can benefit from them,” said Carl J. St. Bernard, Jupiter Endovascular CEO. “This first case in the U.S. could not have gone better, and appears to validate the safety and performance we are seeing in our currently-enrolling European SPIRARE I study.”

Avery Dennison Medical Introduces Ipdated SilFoam Lite: Sustainability, MDR Certification & Performance Improvements

The newly enhanced SilFoam Lite delivers superior efficiency and reliability, bringing improved fluid handling capabilities and improved tack. These improvements make the product ideal for customers seeking quality, high-performance solutions in wound care notes Avery Dennison Medical.

Voluntary Recall Notifying Medtronic Insulin Pump Users of Potential Risks of Shortened Pump Battery Life

Medtronic plc voluntarily issued a field action starting on July 31, 2024, notifying global customers of its MiniMed™ 600 series or 700 series insulin pumps to follow their pump's built-in alerts and alarms for battery status and to contact Medtronic if they observe changes in the battery life of their pump

Medtronic Expands AiBLE Spine Surgery Ecosystem with New Technologies and Siemens Healthineers Partnership

New advancements in the AiBLE Spine Surgery ecosystem build upon the company's commitment to procedural innovation and execution

Axlab, Danish Medtech Pioneer, expands to US with Advanced Robotic Tissue Sectioning for Pathology Laboratories

Kris Rokke, National Sales Director for Axlab in the US. "My team and I are extremely excited and honored about this unique opportunity to also offer this advanced technology to labs across the US and thus contribute to the pathology labs of tomorrow."