Tele: 561.316.3330
Breaking Medical Device News

Monday, September 20, 2021

MEDICAL DEVICE NEWS MAGAZINE

A DIGITAL PUBLICATION FOR THE PRACTICING MEDICAL SPECIALIST, INDUSTRY EXECUTIVE AND INVESTOR
HomeHOSPITALSExperienced Mouse Mothers Tutor Other Females to Parent, Helped by the Hormone Oxytocin

Experienced Mouse Mothers Tutor Other Females to Parent, Helped by the Hormone Oxytocin

Oxytocin

Watching a mother mouse gather her pups into the family’s nest trains other female mice without pups to perform the same parenting task, a new study shows. Furthermore, these observations lead to the production of oxytocin in the brains of virgin female mice, biochemically shaping their maternal behaviors even before they have pups of their own.

Led by researchers at NYU Grossman School of Medicine, the new set of experiments involved round-the-clock filming of female mice interacting with their newborns as well as with virgin mice. Simultaneous electrical readings were made in several brain regions known to produce oxytocin or thought to be responding to the hormone. The research team built on its earlier studies of the so-called pleasure hormone showing that the release of oxytocin is essential not only for the onset of nursing but also for the initiating of other maternal behaviors.

Publishing in the journal Nature online Aug. 11, researchers describe what they called a never-before-seen behavior in which new mouse mothers would without prompting shepherd virgin female mice into the family’s nest along with their pups. Within 24 hours, the virgins began mimicking the maternal behavior of gathering the mom’s pups into the nest even if the mother was not there. Almost as quickly, virgin mice would also start to perform the pup-retrieving task without any direct contact with an experienced mouse mother and after having only “viewed” the mother through a clear plastic window.

The research team also measured brain electrical activity in virgin mice during shepherding and later when they became mothers on their own. They found that both the sight and sound of crying pups moved outside of their nest stimulated oxytocin production in a specific region of the brain, the hypothalamic paraventricular nucleus (PVN). By contrast, chemically blocking any of the visual, auditory, or oxytocin-producing PVN nerve pathways prevented virgin mice from learning to take care of pups.

“Our study shows that in mice the best way to be a mom is to watch and learn from an experienced mom,” says study senior investigator Robert Froemke, PhD, a professor in the Skirball Institute of Biomolecular Medicine at NYU Langone Health. “Given the evidence, we propose that similar mechanisms operate in human mothers.”

Froemke says the study findings in rodents add scientific evidence to the benefits observed from parenting classes in humans. He says the team next plans to examine if the same tutoring relationship exists among dad mice and virgin males.

“This work redefines oxytocin’s role in brain function, broadening its impact to include formidable and complex social networking activities that force the brain to pay attention and adapt to its surroundings at the time, whether it’s reacting to the sound of a pup’s cries or feelings of happiness,” says Froemke, who also serves as a professor in the departments of Otolaryngology-Head and Neck Surgery, and Neuroscience and Physiology at NYU Langone.

As part of the ongoing study, researchers analyzed nearly 5,000 hours (over six months) of video footage of several dozen mother mice interacting with their pups and with virgin mice.

Funding for the study was provided by NIH grants R01 HD088411, R01 DC12557, U19 NS107616, K99 MH106744, F32 MH112232, T32 MH019524, P30 CA016087, and P41 EB017183. Additional funding support was provided by Japan’s Strategic Program for Brain Sciences grant 16K15698; and scholarships from the McKnight Foundation, the Pew Charitable Trusts, and the Howard Hughes Medical Institute.

Besides Froemke, other NYU Langone researchers involved in the study include lead study investigator Ioana Carcea, MD, Ph.D. (now at Rutgers University in Newark, NJ); and study co-investigators Naomi Lopez Caraballo; Bianca Marlin, Ph.D.; Rumi Ooyama; Joyce Mendoza Navarro; Maya Opendak, Ph.D.; Veronica Diaz; Luisa Schuster; Maria Alvarado Torres; Harper Lethin; Daniel Ramos; Jessica Minder; Sebastian Mendoza; Chloe Bair-Marshall; Grace Samadjopoulos; Annegret Falkner, Ph.D.; Dayu Lin, Ph.D.; Adam Mar, Ph.D.; Youssef Wadghiri, Ph.D.; and Regina Sullivan, Ph.D. Other study co-investigators are Justin Riceberg, Ph.D., at the Icahn School of Medicine at Mount Sinai in New York City; Shizu Hidema, Ph.D.; and Katsuhiko Nishimori, Ph.D., at Fukishima Medical University in Japan; and Takefumi Kikusui, Ph.D.; and Kazutaka Mogi, Ph.D., at Azabu University in Kanagawa, Japan.

 

Medical Device News Magazinehttps://infomeddnews.com
Medical Device News Magazine is a division of PTM Healthcare Marketing, Inc. Pauline T. Mayer is the managing editor.

Stay Connected

spot_img

Don't Miss

Mark Foster Joins Xenocor BOD

Foster is a versatile and visionary C-Suite executive who brings 20 years of general management and leadership experience from both venture-backed growth-stage organizations and world-class medical device companies

Hinge Health Acquires the Most Advanced Computer Vision Technology for Tracking Human Motion

CEO Daniel Perez explained, “We won’t stop investing in technology to deliver the most patient-centered digital clinic that improves member experience and outcomes while reducing costs. wrnch allows us to take a giant leap forward in all respects.”

Dale W Wood Congratulates the Huma Team on Raising $130 Million

Major health and technology companies across the world have committed upwards of $130 million to Huma Therapeutics, the health-tech company backed by Dale Ventures.

Rhaeos Awarded $4 Million NIH SBIR Grant

Under the NIH SBIR grant, Rhaeos will leverage their existing wireless sensor hardware to provide additional quantitative flow data to the clinician, giving insight into this currently inaccessible and highly relevant shunt performance metric.

Gynesonics Announces FDA Clearance of Next Generation Sonata System

“This clearance brings significant system improvements that expand the location of fibroids that can be treated while allowing the physician to control all aspects of the treatment from within the sterile field,” said Jiayu Chen, Ph.D. Vice President, Engineering and Advanced Technologies at Gynesonics.

Blackrock Neurotech Invests In Groundbreaking Auditory Nerve Implant With University Of Minnesota And MED-EL

The new investment will enable the development and translation of a new ANI through preclinical studies and later, a pilot clinical trial, where the ANI is then implanted in up to three deaf patients.

Jonathan Chapman: New President/CEO of Trividia Health

Chapman said, “I’m honored to join the Trividia team as President and CEO. This organization has a long history of leadership within the healthcare industry as a provider of accurate, accessible, and affordable point-of-care solutions for the management of diabetes.”

SOLOPASS® System (Bedside Neuro-Navigation Device) Receives FDA 510(k) Clearance

inTRAvent’s SOLOPASS® system brings simple, portable, bedside neuro-navigation into the intensive care unit.

By using this website you agree to accept Medical Device News Magazine Privacy Policy