Gameto Reports: New Data Demonstrating Clinical-Grade Manufacturing of In Vitro Maturation Solution for Fertility Care

Manuscript demonstrates Gameto's manufacturing process resulted in ovarian support cells of improved efficacy, quality and safety for in vitro maturation applications

About Medical Device News Magazine

About Medical Device News Magazine. We are a digital publication founded in 2008 located in the United States.

Advertise with Medical Device News Magazine! Join Our #1 Family of Advertisers!

We pride ourselves on being the best-kept secret when it comes to distributing your news! Our unique digital approach enables us to circulate your...

Summation

  • “This study is the first to demonstrate the end-to-end process by which a therapy developed from induced pluripotent stem cells (iPSC) has the potential to enhance in vitro fertilization (IVF) outcomes and advance women’s health, paving the way for its application in clinical settings,”.
  • “This study highlights the core underlying mechanism of action of our ovarian support cells in maturing eggs outside of the body and provides a deeper look into the role that Fertilo plays in promoting high quality egg maturation for IVF treatment,”.
  • These data demonstrate how Gameto developed a clinical-grade manufacturing process for Fertilo, including using GMP-grade raw materials and a commercial-grade hiPSC line to yield a highly scalable, consistent, and potent production of their OSCs for clinical use.

Gameto, a female-led biotechnology company with a mission to redefine women’s healthcare, today announced new research outlining the cellular engineering and manufacturing techniques underlying Fertilo, their novel investigational in vitro maturation (IVM) solution containing engineered ovarian support cells (OSCs) to mature eggs outside of the body. These data underscore that Gameto’s quality by design strategic product development supports the manufacturing of OSC-IVM for clinical and commercial use.

“This study is the first to demonstrate the end-to-end process by which a therapy developed from induced pluripotent stem cells (iPSC) has the potential to enhance in vitro fertilization (IVF) outcomes and advance women’s health, paving the way for its application in clinical settings,” said Dr. Dina Radenkovic, Chief Executive Officer and co-founder of Gameto.

Gameto’s novel approach uses cellular engineering to create a pure population of highly potent ovarian support cells (OSCs) from a female clinical-grade human induced pluripotent stem cell (hiPSC) line that recreates the dynamic, bidirectional follicular environment in a dish when co-cultured with immature eggs. Gameto has previously published that co-culturing immature human eggs with OSCs results in higher rates of egg maturation and euploid embryo formation.1

“This study highlights the core underlying mechanism of action of our ovarian support cells in maturing eggs outside of the body and provides a deeper look into the role that Fertilo plays in promoting high quality egg maturation for IVF treatment,” said Dr. Christian Kramme, Chief Scientific Officer of Gameto. “We are effectively creating an active cell therapy in a dish, which differs significantly from the media solutions that are currently used for in vitro maturation. These data suggest the applications of this technology could expand beyond OSC-IVM and be used to address additional women’s health and fertility issues as well.”

These data demonstrate how Gameto developed a clinical-grade manufacturing process for Fertilo, including using GMP-grade raw materials and a commercial-grade hiPSC line to yield a highly scalable, consistent, and potent production of their OSCs for clinical use. The researchers also found a high degree of similarity between OSCs derived from hiPSCs and the natural support cells of the ovary, compared with available data of in vivo ovaries from the human cell atlas.

Additionally, using the same gene engineering method for both research-use-only hiPSCs and clinical-grade hiPSC lines resulted in OSCs that were similar on a molecular and functional level. These results suggest Gameto could broaden its platform to include a wider range of donor cells, such as those derived from patients, for potential uses like disease modeling. This supports a potential expansion into additional applications and indications within women’s health and fertility medicine.

The manuscript, titled “Reproducible differentiation of pure ovarian support cells from clinical-grade hiPSCs as a novel infertility treatment,” is available on a preprint server at https://www.biorxiv.org/content/10.1101/2024.04.29.591741v1, and Gameto is submitting it for scientific peer-review for potential publication.

Gameto is currently engaged in rigorous preparations to meet the FDA’s conditions for Phase 3 trial initiation. For more information about Gameto and how the company is redefining women’s healthcare, visit gametogen.com.

Medical Device News Magazinehttps://infomeddnews.com
Medical Device News Magazine provides breaking medical device / biotechnology news. Our subscribers include medical specialists, device industry executives, investors, and other allied health professionals, as well as patients who are interested in researching various medical devices. We hope you find value in our easy-to-read publication and its overall objectives! Medical Device News Magazine is a division of PTM Healthcare Marketing, Inc. Pauline T. Mayer is the managing editor.

Other News

Sedana Medical Completes Patient Recruitment for its Clinical Program in the US

"The completion of INSPiRE-ICU 2 concludes Sedana Medical´s clinical trials in the United States. Running this study together with esteemed clinical investigators from highly ranked academic centers such as Columbia, the Harvard-affiliated medical center Beth Israel Deaconess Medical Center and many others has been very exciting and rewarding. Many investigators from the participating sites have been excited to be part of our pioneering studies. The bedside experience in the studies has generated a lot of interest in using inhaled sedation in US practice, which we hope will be possible soon," said Peter Sackey, Chief Medical Officer of Sedana Medical.

By using this website you agree to accept Medical Device News Magazine Privacy Policy