Medical Device News Magazine

Highly Accurate AI Diagnostic Tool Can Predict Cancer Cell Behavior, Developed by Hebrew University Researchers

About Medical Device News Magazine

About Medical Device News Magazine. We are a digital publication founded in 2008 located in the United States.

Advertise with Medical Device News Magazine! Join Our #1 Family of Advertisers!

We pride ourselves on being the best-kept secret when it comes to distributing your news! Our unique digital approach enables us to circulate your...

An innovative, new method that highly accurately predicts cancer cell behavior could advance cancer diagnosis and treatment has been developed by researchers at the Hebrew University of Jerusalem.

The new diagnostic tool discussed in Science Advances uses a novel method combining nano informatics and machine learning (ML) to classify cells based on the uptake of cell particles with diverse sizes. It could also enhance personalized medicine by facilitating rapid and accurate testing of cancer cell behaviors from patient biopsies, leading to the development of new clinical tests to monitor disease progression and treatment effectiveness.

Current diagnostic methods like imaging scans and tissue biopsies are invasive, expensive and time-consuming, leading to delays in treatment and potential misdiagnoses. These approaches also may not capture the dynamic nature of cancer progression offering limited insights into the disease’s behavior at the cellular level. As a result, there is an urgent need for more effective and non-invasive diagnostic tools.

Doctoral student Yoel Goldstein and Prof. Ofra Benny from the Hebrew University School of Pharmacy in the Faculty of Medicine led the study, in collaboration with Prof. Tommy Kaplan, Head of the Department of Computational Biology at the School of Engineering and Computer Science.

The initial phase involved exposing cancer cells to particles of various sizes, each identified by a unique color. Subsequently, the precise quantity of particles consumed by each cell. Machine learning algorithms then analyzed these uptake patterns to predict critical cell behaviors, such as drug sensitivity and metastatic potential.

“Our method is novel in its ability to distinguish between cancer cells that appear identical, but behave differently at a biological level,” Goldstein says. “This precision is achieved through algorithmic analysis of how micro and nanoparticles are absorbed by cells. The ability to collect and analyze new types of data brings up new possibilities for the field, with the potential to revolutionize clinical treatment and diagnosis through the development of new tools.”

The research has paved the way for new types of clinical tests that could significantly impact patient care,” says Prof. Benny. “This discovery allows us to potentially use cells from patient biopsies to quickly predict disease progression or chemotherapy resistance and could also lead to innovative blood tests that assess the efficacy of targeted immunotherapy treatments.”

Medical Device News Magazinehttps://infomeddnews.com
Medical Device News Magazine provides breaking medical device / biotechnology news. Our subscribers include medical specialists, device industry executives, investors, and other allied health professionals, as well as patients who are interested in researching various medical devices. We hope you find value in our easy-to-read publication and its overall objectives! Medical Device News Magazine is a division of PTM Healthcare Marketing, Inc. Pauline T. Mayer is the managing editor.

Other News

Shoulder Innovations Further Strengthens IP Portfolio in Key Areas with Recent Patent Grants

"These recent grants further strengthen key patent families that are foundational to our technology, and we are pleased the USPTO continues to recognize our meaningful innovation in the shoulder arthroplasty segment," said Rob Ball, CEO of Shoulder Innovations. "This noteworthy expansion of our IP position represents the culmination of over 10 years of research and development, and we are proud of our team for their continued dedication to creating practical solutions for shoulder surgeons and advancing patient outcomes."

Radical Catheter Technologies Presents Analysis of Disruptive, Recently FDA-Cleared Endovascular Technology at the Society of NeuroInterventional Surgery 21st Annual Meeting

This new catheter, the first product commercialized from this novel technology platform, is designed to enable access to the blood vessels in the brain for both femoral and radial access. A multi-center analysis of this disruptive technology is being presented today at Society of NeuroInterventional Surgery 21st annual meeting. In addition, the Company confirmed the closing of a $20 million financing round led by NeuroTechnology Investors, which will be used to scale the company and expand the Radical platform notes Radical Catheter Technologies.

Rapid Medical™ Completes Initial Neurovascular Cases in the USA Following FDA Clearance of Its Active Access Solution

“With DRIVEWIRE, our design goal was to bring new levels of access and control to the interventional suite while improving best-in-class guidewires,” comments Giora Kornblau, Chief Technology Officer at Rapid Medical. “When physicians are looking for technologies that increase the clinical possibilities and safety for the patient, we want Rapid to be the first place they look.”