Medical Device News Magazine

Hydrogel for Wound Healing – New Study Published in Polymers for Advanced Technologies Shows Potential Benefits

About Medical Device News Magazine

About Medical Device News Magazine. We are a digital publication founded in 2008 located in the United States.

Advertise with Medical Device News Magazine! Join Our #1 Family of Advertisers!

We pride ourselves on being the best-kept secret when it comes to distributing your news! Our unique digital approach enables us to circulate your...

August 28, 2020:

Hydrogel in the News: With an increase in the elderly and aging population and also in the number of invasive surgeries, wound healing has become a critical focus area in medicine. The complex bodily processes involved in wound healing make it challenging as well as rewarding to identify newer methods and materials for effective wound healing. Now, in a new study, published in Polymers for Advanced Technologies, led by an undergraduate student Ryota Teshima, researchers from Tokyo University of Science, Japan, have developed a groundbreaking novel material with possible applications in wound healing. But exactly why is this new material so exciting?

Hydrogel: It is important to create an optimal physiological environment around a wound to promote the growth of new cells. Recent research has revealed that a type of material called “hydrogel” is exceptionally useful for achieving such conditions given its molecular structure. Hydrogels are three-dimensionally cross-linked networks of polymers that can absorb more than 95% of their volume in water. Hydrogels with natural polymers have excellent compatibility with the biological conditions of our skin and tissues (referred to as “biocompatibility”), can absorb fluids from the wound, and continuously provide moisture into the wound, creating a highly suitable environment for the wound to heal.

One such natural polymer that is used in hydrogels for wound dressing is alginate, a carbohydrate derived from seaweed, and therefore, abundantly available. Alginate gels are very easy to prepare, but gelation occurs quickly, making it difficult to control the gelation time. Although methods to achieve this control have previously been reported, ensuring short gelation time while maintaining transparency results in hydrogels with a slightly acidic (4–6) or neutral pH. Slightly acidic conditions were, until recently, believed to be beneficial for wound healing, but newer research has found that a slightly alkaline pH (8–8.5) is better for promoting the growth of “skin healing” cells such as fibroblasts and keratinocytes.

This is the context that shaped the characteristics of the next level alginate hydrogel production method that Mr. Teshima and his team developed. He summarizes their breakthrough: “We have succeeded in preparing a novel alkaline alginate hydrogel (pH 8.38–8.57) suitable for wound healing via a method that requires no special equipment and can be carried out at room temperature. This, in addition to the fact that the hydrogel forms in 5 minutes, makes it ideal for potential use in any medical practice anywhere for superior wound healing.”

Their method involves mixing calcium carbonate and potassium alginate, and then adding carbonated water to this mixture and letting the “gelation” (gel formation) process take place. In this method, the pH of the gel shifts to alkaline because the carbon dioxide volatilizes after gelation. This also ensures transparency of the gel, which in turn allows the visual assessment of wounds and helps in easily ascertaining the progress of healing. Also, regardless of the amounts of ingredients used, the resultant hydrogels have extremely high water content—up to 99%.

When the team placed their hydrogel in physiological saline solution, it passed the test for another critical requisite for a wound dressing: the potential to absorb exudates from the wound. And while the hydrogel did become structurally weak and could not be lifted with tweezers after a week of immersion, it retained its shape.

Speaking about the motivation behind this exciting study, Mr Teshima says, “I have been experimenting with alginate gels ever since junior high school. There was also increasing interest in regenerative medicine when I was growing up, which compelled me to focus on the creation of useful biocompatible materials that can be used in medical therapy.” Well, there’s no denying that this novel hydrogel developed by Mr Teshima’s team shows immense potential for near-future application to wound healing in medicine.

Hopeful of even more potential applications of their method in medicine beyond wound healing, Mr Teshima says, “In the future, if it is possible to control the sustained release of an effective drug held inside it, this novel hydrogel can be used as a drug carrier as well.”

For now, the next step is to assess its viability and effectiveness in living cells and animal models. When that is done, Mr Teshima’s Japan, and subsequently, the world, can be made a better place.


Reference

Reference

Title of original paper: Preparation and evaluation of physicochemical properties of novel alkaline calcium alginate hydrogels with carbonated water

Journal: Polymers for Advanced Technologies

DOI: 10.1002/pat.5027 

Medical Device News Magazinehttps://infomeddnews.com
Medical Device News Magazine provides breaking medical device / biotechnology news. Our subscribers include medical specialists, device industry executives, investors, and other allied health professionals, as well as patients who are interested in researching various medical devices. We hope you find value in our easy-to-read publication and its overall objectives! Medical Device News Magazine is a division of PTM Healthcare Marketing, Inc. Pauline T. Mayer is the managing editor.

Other News

Shoulder Innovations Further Strengthens IP Portfolio in Key Areas with Recent Patent Grants

"These recent grants further strengthen key patent families that are foundational to our technology, and we are pleased the USPTO continues to recognize our meaningful innovation in the shoulder arthroplasty segment," said Rob Ball, CEO of Shoulder Innovations. "This noteworthy expansion of our IP position represents the culmination of over 10 years of research and development, and we are proud of our team for their continued dedication to creating practical solutions for shoulder surgeons and advancing patient outcomes."

Radical Catheter Technologies Presents Analysis of Disruptive, Recently FDA-Cleared Endovascular Technology at the Society of NeuroInterventional Surgery 21st Annual Meeting

This new catheter, the first product commercialized from this novel technology platform, is designed to enable access to the blood vessels in the brain for both femoral and radial access. A multi-center analysis of this disruptive technology is being presented today at Society of NeuroInterventional Surgery 21st annual meeting. In addition, the Company confirmed the closing of a $20 million financing round led by NeuroTechnology Investors, which will be used to scale the company and expand the Radical platform notes Radical Catheter Technologies.

Rapid Medical™ Completes Initial Neurovascular Cases in the USA Following FDA Clearance of Its Active Access Solution

“With DRIVEWIRE, our design goal was to bring new levels of access and control to the interventional suite while improving best-in-class guidewires,” comments Giora Kornblau, Chief Technology Officer at Rapid Medical. “When physicians are looking for technologies that increase the clinical possibilities and safety for the patient, we want Rapid to be the first place they look.”