Medical Device News Magazine

Kheiron Medical Technologies Announces New Collaboration with Researchers at Stanford University

To design functional proof-of-concept deep learning models to solve clinical problems in novel ways, starting with Non-Hodgkin’s Lymphoma (NHL)

About Medical Device News Magazine

About Medical Device News Magazine. We are a digital publication founded in 2008 located in the United States.

Advertise with Medical Device News Magazine! Join Our #1 Family of Advertisers!

We pride ourselves on being the best-kept secret when it comes to distributing your news! Our unique digital approach enables us to circulate your...

Kheiron Medical Technologies today announced its new collaboration with researchers at Stanford University to design functional proof-of-concept deep learning models to solve clinical problems in novel ways, starting with Non-Hodgkin’s Lymphoma (NHL). With the collaboration, Kheiron, which has pioneered the development and deployment of artificial intelligence solutions to help radiologists detect breast cancer earlier, will leverage its existing technologies and expertise to expand into new imaging modalities and cancer types. This furthers its mission of transforming cancer diagnostics through the power of deep learning.

The collaboration aims to harness the collective expertise of the Stanford Center for Artificial Intelligence in Medicine & Imaging (AIMI Center) and Kheiron. This endeavour will be referred to as ‘The Kaplan Project’ in honor of Stanford’s former radiation oncology leader, Dr. Henry Kaplan, who in the 1960s developed some of the earliest treatments for lymphoma. The Kaplan Project aligns to the AIMI center’s mission, where interdisciplinary expertise is the foundation to help solve clinically important problems in medicine using AI.

“Projects like this one are so exciting because they capitalize on collaborations not only between clinicians and data scientists, but also between academics and industry,” said Dr. Curt Langlotz, Director of the AIMI Center.

The purpose of staging lymphoma is to quantify the extent of disease, guide decisions around therapy, and provide a baseline prior to treatment. For oncological radiologists, the tasks of staging and evaluating post-treatment response on PET/CT scan images is manual and time-consuming.

The Kaplan Project will seek to apply Kheiron’s deep learning technology to FDG-PET/CT images of lymphoma patients to enhance two key radiologist outcomes: improving radiologist efficiency and improving radiologist accuracy.

“This groundbreaking project marks a new chapter in the application of AI to transform cancer diagnostics across the entire patient pathway,” said Dr. Peter Kecskemethy, CEO of Kheiron. “Uniting new deep learning technologies with the clinical expertise of academic research institutions like Stanford will lead to the development of a completely new category of AI diagnostics and ultimately improve patient outcomes.”

“Our project aims to improve a time-consuming and mostly qualitative process, the longitudinal assessment of whole-body FDG-PET/CT scans, using deep learning to augment imaging specialists,” said Dr. Guido A. Davidzon, Clinical Associate Professor at Stanford University. “The overarching goal is to reduce the time needed to evaluate a PET scan, and by improving our throughput, ultimately increase patient access to a well-established noninvasive diagnostic imaging tool used by oncologists in the care of cancer.”

Medical Device News Magazinehttps://infomeddnews.com
Medical Device News Magazine provides breaking medical device / biotechnology news. Our subscribers include medical specialists, device industry executives, investors, and other allied health professionals, as well as patients who are interested in researching various medical devices. We hope you find value in our easy-to-read publication and its overall objectives! Medical Device News Magazine is a division of PTM Healthcare Marketing, Inc. Pauline T. Mayer is the managing editor.

Other News

Shoulder Innovations Further Strengthens IP Portfolio in Key Areas with Recent Patent Grants

"These recent grants further strengthen key patent families that are foundational to our technology, and we are pleased the USPTO continues to recognize our meaningful innovation in the shoulder arthroplasty segment," said Rob Ball, CEO of Shoulder Innovations. "This noteworthy expansion of our IP position represents the culmination of over 10 years of research and development, and we are proud of our team for their continued dedication to creating practical solutions for shoulder surgeons and advancing patient outcomes."

Radical Catheter Technologies Presents Analysis of Disruptive, Recently FDA-Cleared Endovascular Technology at the Society of NeuroInterventional Surgery 21st Annual Meeting

This new catheter, the first product commercialized from this novel technology platform, is designed to enable access to the blood vessels in the brain for both femoral and radial access. A multi-center analysis of this disruptive technology is being presented today at Society of NeuroInterventional Surgery 21st annual meeting. In addition, the Company confirmed the closing of a $20 million financing round led by NeuroTechnology Investors, which will be used to scale the company and expand the Radical platform notes Radical Catheter Technologies.

Rapid Medical™ Completes Initial Neurovascular Cases in the USA Following FDA Clearance of Its Active Access Solution

“With DRIVEWIRE, our design goal was to bring new levels of access and control to the interventional suite while improving best-in-class guidewires,” comments Giora Kornblau, Chief Technology Officer at Rapid Medical. “When physicians are looking for technologies that increase the clinical possibilities and safety for the patient, we want Rapid to be the first place they look.”