Know Labs’ Non-Invasive Glucose Monitoring Technology Shows Improved Accuracy

Latest study demonstrates a machine learning model improved Bio-RFID™ sensor’s accuracy for predicting blood glucose, using Dexcom G6® as reference device

Know Labs, Inc. (NYSE American: KNW) today announced the results of a new study titled, “Algorithm Refinement in the Non-Invasive Detection of Blood Glucose Using Know Labs’ Bio-RFID Technology.” The study demonstrates that algorithm optimization using a light gradient-boosting machine (lightGBM) machine learning model improved the accuracy of Know Labs’ Bio-RFID™ sensor technology at quantifying blood glucose, demonstrating an overall Mean Absolute Relative Difference (MARD) of 12.9% – which is within the range of FDA-cleared blood glucose monitoring devices. Bio-RFID is a novel technology platform that uses electromagnetic energy in the form of radio waves to non-invasively capture molecular signatures and convert them into meaningful information.

Like all previous Know Labs clinical studies, this study was designed to assess the ability of the Bio-RFID sensor to non-invasively and continuously quantify blood glucose, using the Dexcom G6® continuous glucose monitor (CGM) as a proxy for the measurement of blood glucose. Unique from previous studies, Know Labs tested new data science techniques and trained a lightGBM model to predict blood glucose using 1,555 observations – or reference device values – from over 130 hours of data collection across five healthy participants. Using this model, Know Labs was able to predict blood glucose in the test set – the dataset that provides a blind evaluation of model performance – with a MARD of 12.7% in the normoglycemic range and 14.0% in the hyperglycemic range.

“This is a transformational time for Know Labs. We are constantly uncovering new learnings in our research, and in this case found that the lightGBM model is well-suited for these early datasets given the amount of data available,” said Steve Kent, Chief Product Officer at Know Labs. “In our previous technical feasibility study we utilized a neural network, and as is best practice when developing algorithms, our data science team is constantly refining our machine learning models to understand and optimize system performance and accuracy. This positive development is another critical step in our data collection, algorithm refinement, and technical development.”

This study, which was peer-reviewed by Know Labs’ Scientific Advisory Board, builds upon recently released peer-reviewed research. In February, Know Labs published a proof-of-concept study that examined the efficacy of the Bio-RFID sensor using one participant, resulting in a MARD of 19.3%. Earlier this month, Know Labs also released study results validating the technical feasibility of Bio-RFID using a neural network (NN) model to predict readings of the Dexcom G6® as a proxy for blood glucose, which resulted in a MARD of 20.6%. The techniques used to analyze the data differed from previous analyses among the same (N=5) participant population, including: approach to feature reduction, stratification of the data by glycemic range and only from the arm corresponding to the reference device, and a different machine learning model. The improved accuracy as measured by a MARD of 12.9% achieved in

this study is comparable to other independently validated MARD values reported for today’s FDA-cleared, commercially available CGM devices.

“A MARD of 12.9% at this stage in our development is a truly remarkable feat. Our whole team is thrilled by these findings and the improved accuracy of our Bio-RFID technology as we continue to refine our approach,” said Ron Erickson, CEO and Chairman at Know Labs. “Our goal with these ongoing clinical studies is to develop large volumes of data to enable further model development, which is a critical step in our goal to bring the first FDA-cleared non-invasive glucose monitoring device to the market so that millions of people can manage their diabetes more efficiently.”

The full manuscript of this study will be submitted to a peer-review journal as Know Labs continues to prioritize external validation of the Bio-RFID technology. To view Know Labs’ growing body of peer-reviewed research, visit www.knowlabs.co/research-and-validation.

 

SourceKnow Labs

Hot this week

Avery Dennison Medical Introduces Ipdated SilFoam Lite: Sustainability, MDR Certification & Performance Improvements

The newly enhanced SilFoam Lite delivers superior efficiency and reliability, bringing improved fluid handling capabilities and improved tack. These improvements make the product ideal for customers seeking quality, high-performance solutions in wound care notes Avery Dennison Medical.

Voluntary Recall Notifying Medtronic Insulin Pump Users of Potential Risks of Shortened Pump Battery Life

Medtronic plc voluntarily issued a field action starting on July 31, 2024, notifying global customers of its MiniMed™ 600 series or 700 series insulin pumps to follow their pump's built-in alerts and alarms for battery status and to contact Medtronic if they observe changes in the battery life of their pump

Medtronic Expands AiBLE Spine Surgery Ecosystem with New Technologies and Siemens Healthineers Partnership

New advancements in the AiBLE Spine Surgery ecosystem build upon the company's commitment to procedural innovation and execution

Axlab, Danish Medtech Pioneer, expands to US with Advanced Robotic Tissue Sectioning for Pathology Laboratories

Kris Rokke, National Sales Director for Axlab in the US. "My team and I are extremely excited and honored about this unique opportunity to also offer this advanced technology to labs across the US and thus contribute to the pathology labs of tomorrow."

Spartan Medical Broadens Single-Use Sterile Instrument Portfolio to Improve Outcomes, Increase Efficiency, and Generate Cost Savings

Spartan Medical products portfolio of single-use, sterile med tech includes micro and minor surgical convenience kits, kerrison rongeurs, spinal and general surgical retractors, dural repair kits, synthetic biologics, and a wide range of orthopedic pre-sterilized implants and devices.