Know Labs’ Non-Invasive Glucose Monitoring Technology Shows Improved Accuracy

Latest study demonstrates a machine learning model improved Bio-RFID™ sensor’s accuracy for predicting blood glucose, using Dexcom G6® as reference device

Know Labs, Inc. (NYSE American: KNW) today announced the results of a new study titled, “Algorithm Refinement in the Non-Invasive Detection of Blood Glucose Using Know Labs’ Bio-RFID Technology.” The study demonstrates that algorithm optimization using a light gradient-boosting machine (lightGBM) machine learning model improved the accuracy of Know Labs’ Bio-RFID™ sensor technology at quantifying blood glucose, demonstrating an overall Mean Absolute Relative Difference (MARD) of 12.9% – which is within the range of FDA-cleared blood glucose monitoring devices. Bio-RFID is a novel technology platform that uses electromagnetic energy in the form of radio waves to non-invasively capture molecular signatures and convert them into meaningful information.

Like all previous Know Labs clinical studies, this study was designed to assess the ability of the Bio-RFID sensor to non-invasively and continuously quantify blood glucose, using the Dexcom G6® continuous glucose monitor (CGM) as a proxy for the measurement of blood glucose. Unique from previous studies, Know Labs tested new data science techniques and trained a lightGBM model to predict blood glucose using 1,555 observations – or reference device values – from over 130 hours of data collection across five healthy participants. Using this model, Know Labs was able to predict blood glucose in the test set – the dataset that provides a blind evaluation of model performance – with a MARD of 12.7% in the normoglycemic range and 14.0% in the hyperglycemic range.

“This is a transformational time for Know Labs. We are constantly uncovering new learnings in our research, and in this case found that the lightGBM model is well-suited for these early datasets given the amount of data available,” said Steve Kent, Chief Product Officer at Know Labs. “In our previous technical feasibility study we utilized a neural network, and as is best practice when developing algorithms, our data science team is constantly refining our machine learning models to understand and optimize system performance and accuracy. This positive development is another critical step in our data collection, algorithm refinement, and technical development.”

This study, which was peer-reviewed by Know Labs’ Scientific Advisory Board, builds upon recently released peer-reviewed research. In February, Know Labs published a proof-of-concept study that examined the efficacy of the Bio-RFID sensor using one participant, resulting in a MARD of 19.3%. Earlier this month, Know Labs also released study results validating the technical feasibility of Bio-RFID using a neural network (NN) model to predict readings of the Dexcom G6® as a proxy for blood glucose, which resulted in a MARD of 20.6%. The techniques used to analyze the data differed from previous analyses among the same (N=5) participant population, including: approach to feature reduction, stratification of the data by glycemic range and only from the arm corresponding to the reference device, and a different machine learning model. The improved accuracy as measured by a MARD of 12.9% achieved in

this study is comparable to other independently validated MARD values reported for today’s FDA-cleared, commercially available CGM devices.

“A MARD of 12.9% at this stage in our development is a truly remarkable feat. Our whole team is thrilled by these findings and the improved accuracy of our Bio-RFID technology as we continue to refine our approach,” said Ron Erickson, CEO and Chairman at Know Labs. “Our goal with these ongoing clinical studies is to develop large volumes of data to enable further model development, which is a critical step in our goal to bring the first FDA-cleared non-invasive glucose monitoring device to the market so that millions of people can manage their diabetes more efficiently.”

The full manuscript of this study will be submitted to a peer-review journal as Know Labs continues to prioritize external validation of the Bio-RFID technology. To view Know Labs’ growing body of peer-reviewed research, visit www.knowlabs.co/research-and-validation.

 

SourceKnow Labs

Hot this week

Cartessa Aesthetics Partners with Classys to Bring EVERESSE to the U.S. Market

Classys, which is listed on the KOSDAQ, is one of South Korea's most distinguished aesthetic technology manufacturers, with devices distributed in 80+ markets globally. This partnership marks Classys's official entry into the American marketplace, with Cartessa Aesthetics as the exclusive distributor for EVERESSE, launched under the Volnewmer brand in current global markets.

Stryker Launches Next-Generation of SurgiCount+

Now integrated with Stryker's Triton technology, SurgiCount+ addresses two key challenges: retained surgical sponges and blood loss assessment. Integrating these previously separate digital solutions provides the added benefit of a more efficient, streamlined workflow for hospitals notes Stryker.

Nevro Receives CE Mark In Europe for It’s HFX iQ™ Spinal Cord Stimulation System

Nevro notes HFX iQ is the first and only SCS system with artificial intelligence (AI) technology that combines high-frequency (10 kHz) therapy built on landmark evidence that uses ongoing cloud data insights to deliver personalized pain relief

Recor Medical Reports: CMS Grants Distinct TPT Device Code and Category to Recor Medical for Ultrasound Renal Denervation

The approval of TPT offers incremental reimbursement payments for outpatient procedures performed with ultrasound renal denervation for Medicare fee-for-service beneficiaries. It becomes effective January 1, 2025, and is expected to remain effective for up to three years notes Recor Medical.

Jupiter Endovascular Reports | 1st U.S. Patient Treated with Jupiter Shape-shifting Thrombectomy Device

“Navigation challenges during endovascular procedures are often underappreciated and have led to under-adoption of life-saving procedures, such as pulmonary embolectomy. We have purpose-built our Endoportal Control technology to solve these issues and make important endovascular procedures accessible to more clinicians and their patients who can benefit from them,” said Carl J. St. Bernard, Jupiter Endovascular CEO. “This first case in the U.S. could not have gone better, and appears to validate the safety and performance we are seeing in our currently-enrolling European SPIRARE I study.”
Exit mobile version