Medical Device News Magazine

Tuesday, May 17, 2022

Ph: 561.316.3330

Home

Press Releases

About

Editorial

Advertise

Health/Lifestyle

Articles

Contact

MEDICAL DEVICE NEWS MAGAZINE

A DIGITAL PUBLICATION FOR THE PRACTICING MEDICAL SPECIALIST, INDUSTRY EXECUTIVE AND INVESTOR

Market Reports

FDA

Executives

Funding

Acquisitions

Non Profits

Hospitals

Subscribe

Biotechnology News Magazine

New Study Suggests That Masimo SedLine® Brain Function Monitoring May Aid Early Identification of Patients at Risk of Developing Postoperative Delirium

Masimo (NASDAQ: MASI) today announced the findings of a prospective study published in Anesthesia & Analgesia in which Dr. Claudia Spies and colleagues investigated the relationship between parameters derived from electroencephalogram (EEG) spectra, measured using Masimo SedLine® Brain Function Monitoring, and postoperative delirium (POD) in older patients undergoing elective surgery.

The researchers found that the incidence of POD correlated with several spectral dynamics, in particular spectral edge frequency (SEF), suggesting that such EEG-based markers may help in early identification of patients at risk of developing POD.1

POD is a frequent complication in geriatric patients, often associated with worse short- and long-term outcomes and long-term cognitive dysfunction. Noting that the incidence of POD is associated with prolonged EEG burst suppression during general anesthesia, the researchers sought to investigate whether specific preoperative, preexisting EEG signatures might be related to a higher risk of developing POD.

The investigators enrolled 237 patients ≥ 65 years scheduled for elective surgery of at least 60 minutes at the Charité-Universitätsmedizin Berlin (Campus Virchow Klinikum and Campus Mitte) between November 2014 and December 2016. Using Masimo Root® with SedLine, frontal EEGs were recorded from before induction of anesthesia until return of consciousness. The researchers used the SedLine data to analyze a variety of EEG-derived parameters, including SEF (the frequency below which 95% of the power in the EEG is located), Patient State Index (a processed EEG parameter related to the effect of anesthetic agents), and duration of burst suppression, and also performed multitaper spectral analyses to calculate overall frontal power spectra across various frequency bands. Screening for POD was performed twice every day until the seventh day after surgery (or until hospital discharge) based on a variety of standard criteria, including the Nursing Delirium Screening Scale and Confusion Assessment Method. Patients with one or more positive screenings were classed as POD patients, and the remaining ones as NoPOD patients.

Of the 237 patients, 41 (17%) developed POD. The researchers found that two aspects of the preoperative EEG of POD patients was associated with lower values: SEF (POD group: 13.1 ± 4.6 Hz; NoPOD group: 17.4 ± 6.9 Hz; p = 0.002) and γ-band power (POD: -24.33 ± 2.8 dB; NoPOD: -17.9 ± 4.81 dB). Postinduction absolute α-band power was also significantly lower: POD: -7.37 ± 4.52 dB; NoPOD: -5 ± 5.03 dB. In POD patients, the ratio of preoperative to postinduction SEF was ~1; in NoPOD patients it was > 1, indicative of a slowing EEG with loss of consciousness. Finally, POD was independently associated with preoperative SEF (p = 0.025, odds ratios = 0.892, 95% CI 0.808 – 0.986), preoperative γ-band power (p = 0.029, OR = 0.568, 95% CI 0.342 – 0.944) and SEF ratio (p = 0.009, OR = 0.108, 95% CI (0.021 – 0.568).

The researchers concluded, “Lower preoperative SEF, absence of slowing in EEG while transitioning from preoperative state to unconscious state, and lower EEG power in relevant frequency bands in both these states are related to POD development. These findings may suggest an underlying pathophysiology and might be used as EEG-based marker for early identification of patients at risk to develop POD.”

The authors also noted, “Preoperative spectral EEG signatures and reduced EEG dynamics at loss of consciousness are associated with the development of POD in older patients, where changes in EEG signatures are most likely related to reduced GABA-ergic neuronal activation in POD patients. These findings can be described as predisposing EEG factors for POD, which might be used as a potential EEG-based marker for early identification of patients at risk to develop POD.”

David Drover, MD, Professor of Anesthesiology at Stanford Health Care, commented, “This study not only further supports existing knowledge but expands our understanding of how brain function monitoring can help clinicians improve postoperative outcomes in the elderly patient.”

Postoperative delirium is an acute state of mental confusion characterized by alterations in attention, consciousness, and disorganized thinking. A common and serious complication, POD afflicts up to 60% of patients after major surgery,2-5 is most common in the elderly,2-5 and occurs in up to 91% of the critically ill.6 POD is associated both with worse short- and long-term outcomes and higher costs,3,6-9 and numerous medical bodies—including the American Society of Anesthesiologists (ASA), the United Kingdom National Institute for Health and Care Excellence, the American Geriatric Society, and the American College of Surgeons—have made the prevention of POD a public health priority.10-13 The ASA’s Brain Health Initiative, dedicated to minimizing the impact of pre-existing cognitive deficits and optimizing the cognitive recovery and perioperative experience for adults 65 years and older undergoing surgery, describes POD as a “major public health issue.”14 The incidence of POD has been associated both with preoperative vulnerabilities and—of key importance to studies such as this—the cumulative duration of intraoperative EEG burst suppression. As numerous studies have found, processed EEG monitoring during surgery, by helping clinicians minimize the duration of burst suppression, may lower the rate of POD.15-19


References

  1. Koch S, Windmann V Chakravarty S, Kruppa J, Yürek F, Brown E, Winterer G, Spies C. Perioperative Electroencephalogram Spectral Dynamics Related to Postoperative Delirium in Older Patients. Anesth Analg. Dec 2021. 13(6):1598-1607. DOI: 10.1213/ANE.000000000000005668..
  2. Lipowski ZL. Delirium in the elderly patient. N Engl J Med. (1989) 320:578–82. doi: 10.1056/NEJM198903023200907.
  3. Khadka J, McAlinden C, Pesudovs K. Cognitive trajectories after postoperative delirium. N Engl J Med. (2012) 367:30–9. doi: 10.1056/NEJMoa1112923.
  4. Inouye SK, Westendorp RG, Saczynski JS. Delirium in elderly people. Lancet. (2014) 383:911–22. doi: 10.1016/S0140-6736(13)60688-1.
  5. Bin Abd Razak HR, Yung WY. Postoperative delirium in patients undergoing total joint arthroplasty: a systematic review. J Arthroplasty. (2015) 30:1414–7. doi: 10.1016/j.arth.2015.03.012.
  6. Salluh JI, Wang H, Schneider EB, Nagaraja N, Yenokyan G, Damluji A, et al. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ. (2015) 350:h2538. doi: 10.1136/bmj.h2538.
  7. Inouye SK. The dilemma of delirium: clinical and research controversies regarding diagnosis and evaluation of delirium in hospitalized elderly medical patients. Am J Med. (1994) 97:278–88. doi: 10.1016/0002-9343(94)90011-6.
  8. Crocker E, Beggs T, Hassan A, Denault A, Lamarche Y, Bagshaw S, et al. Long-term effects of postoperative delirium in patients undergoing cardiac operation: a systematic review. Ann Thoracic Surg. (2016) 102:1391–9. doi: 10.1016/j.athoracsur.2016.04.071.
  9. Mashour GA, Woodrum DT, Avidan MS. Neurological complications of surgery and anaesthesia. Br J Anaesthesia. (2015) 114:194–203. doi: 10.1093/bja/aeu296.
  10. American Society of Anesthesiologists. Perioperative Brain Health Initiative Website. (2018). Available online at: https://www.asahq.org/brainhealthinitiative (accessed September 16, 2018).
  11. Mohanty S, Rosenthal RA, Russell MM, Neuman MD, Ko CY, Esnaola NF. Optimal perioperative management of the geriatric patient: a best practices guideline from the American College of Surgeons NSQIP and the American Geriatrics Society. J Am College Surgeons. (2016) 222:930– 47. doi: 10.1016/j.jamcollsurg.2015.12.026.
  12. O’Mahony R, Murthy L, Akunne A, Young J. Synopsis of the National Institute for Health and Clinical Excellence guideline for prevention of delirium. Ann Internal Med. (2011) 154:746–51. doi: 10.7326/0003-4819-154-11-201106070-00006.
  13. National Institute for Health and Care Excellence. Delirium in Adults. London: National Institute for Health and Care Excellence (2014).
  14. Brain Health. ASA. https://www.asahq.org/in-the-spotlight/brain-health. Accessed 13 Nov 2021.
  15. Tang CJ, Jin Z, Sands LP, Pleasants D, Tabatabai S, Hong Y, Leung JM. ADAPT-2: A Randomized Clinical Trial to Reduce Intraoperative EEG Suppression in Older Surgical Patients Undergoing Major Noncardiac Surgery. Anesth Analg 2020; 131(4):1228-1236.
  16. Radtke FM, Franck M, Lendner J, Krüger S, Wernecke KD, Spies CD. Monitoring depth of anaesthesia in a randomized trial decreases the raten of postoperative delirium but not postoperative cognitive dysfunction. Br J Anaesthesia. (2013) 110:98–105. doi: 10.1093/bja/aet055.
  17. MacKenzie KK, Britt-Spells AM, Sands LP, Leung JM. Processed electroencephalogram monitoring and postoperative delirium: a systematic review and meta-analysis. Anesthesiology. (2018)129:417–27. doi: 10.1097/ALN.0000000000002323.
  18. Sieber FE, Zakriya KJ, Gottschalk A, Blute MR, Lee HB, Rosenberg PB, et al. Sedation depth during spinal anesthesia and the development of postoperative delirium in elderly patients undergoing hip fracture repair. Mayo Clin Proc. (2010) 85:18–26. doi: 10.4065/mcp.2009.0469.
  19. Whitlock EL, Torres BA, Lin N, Helsten DL, Nadelson MR, Mashour GA, et al. Postoperative delirium in a substudy of cardiothoracic surgical patients in the BAG-RECALL clinical trial. Anesth Analg. (2014) 118:809–17. doi: 10.1213/ANE.000000000000002.
  20. Published clinical studies on pulse oximetry and the benefits of Masimo SET® can be found on our website at http://www.masimo.com. Comparative studies include independent and objective studies which are comprised of abstracts presented at scientific meetings and peer-reviewed journal articles.
  21. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
  22. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;Jan 8;338.
  23. Taenzer A et al. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010:112(2):282-287.
  24. Taenzer A et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
  25. McGrath S et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
  26. McGrath S et al. Inpatient Respiratory Arrest Associated With Sedative and Analgesic Medications: Impact of Continuous Monitoring on Patient Mortality and Severe Morbidity. J Patient Saf. 2020 14 Mar. DOI: 10.1097/PTS.0000000000000696.
  27. Estimate: Masimo data on file.
  28. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview.

 

 

By using this website you agree to accept Medical Device News Magazine Privacy Policy