What Are CNC Machines and How Do They Work?

CNC machining is one of the highest-value industries in the world. According to economic analysts, the CNC machining market is valued at over $56.4 billion worldwide.

And the market’s value is only growing.

If you’re a small manufacturer—or if you’re interested in research, design, and product customization—a CNC machine may be a worthwhile investment.

A CNC machine may be what you need to take your business to the next level. Read on to learn precisely what CNC machines are, how they work, and which machine is suitable for you and your industry.

What Are CNC Machines?

A CNC machine is a “computer numerical control” machine. It’s a mechanical or robotic device that receives commands from computer software.

The device incorporates manufacturing tools. Its movements are primarily automated, and it rarely requires human intervention. CNC machines may perform manufacturing processes that include:

  • Milling
  • Lathing
  • Cutting
  • Sculpting
  • Grinding
  • Drilling
  • Routing
  • Engraving

CNC machining is a type of subtractive manufacturing. The machines create product parts according to instructions by subtracting them from raw materials.

This is the inverse of additive manufacturing processes, like 3D printing.

CNC Machining Uses Cases: Common Industries

Designers can swap out a CNC machine’s cutting and shaping tools—as needed. This enables the machine to manipulate different materials effectively. Three industries utilize CNC machining more often than others.

Medical Equipments

The medical and healthcare technology industries use CNC machines to create medical devices.

CNC machining lets medical professionals create precision devices with niche applications. They can also tailor a machine or instrument to a specific patient’s body or a physician’s preference.

One of the most common and essential uses for using this machinery in the medical industry is for making bodily implants such as knee and hip replacements. Medical implants aren’t produced in large amounts and therefore CNC machines serve greatly, as they use the tools on repeat, meaning quantity doesn’t impact the quality and pricing of the object.

Some of the common materials used for creating medical implants with CNC are:

  • Cobalt-chrome alloys
  • Titanium alloys
  • Stainless steel
  • Polyarylate-ether ketone (PEEK)

CNC machines are not only used for making implants for the body, it is also used greatly in micromachining, dentistry and for surgical instruments as all of those should be precise and created with minimum error.

Some frequently machined products include:

  • Biopsy tubes
  • Forceps
  • Scalpels and scissors
  • Pacemaker components
  • Catheters
  • Medical equipment components (for example, MRI machine parts)

Developers may use a micromachine to create small parts that require fine, precise detail.

Aerospace

The aerospace and aviation industries use CNC machines to create connection products. These products ensure secure placement and seamless coordination among different parts of an airplane engine.

Within the aerospace component fabrication domain, CNC Machining is pivotal for manufacturers. Especially for aerospace parts makers, it’s imperative that each component aligns perfectly with stringent specifications. Hereby, the precision offered by CNC is unmatched and not only ensures product reliability but also enhances safety standards.

CNC machines empower premium optimization of optical, electrical, and fluid-connected equipment. They cut down manufacturing time for each product unit and enable hyper-specific product development.

Military

The U.S. military requires all equipment and equipment parts to meet the United States Defense Standard, MIL-SPEC. Other government departments, including NASA, have adopted MIL-SPEC.

A CNC machine makes it far easier to meet or exceed MIL-SPEC standards. Products from helicopter components to couplers are almost exclusively made with these machines.

How Does a CNC Machine Work? (Stages)

CNC machines receive instructions from a software program. The software may be part of the machine itself, or it may be connected externally.

The software program gives instructions based on specific preconditions (assumptions) about the machine’s parts. The device must be set up properly to correctly execute the software’s directions.

Different types of CNC machines receive instructions via unique codes. There are many technologies available right now to make it as close to perfect and as efficient to use as possible. One of such are mini mills which are small enough to be comfortable for utilization. People usually tend to make a Haas vs Syil comparison, as those are considered the best in automatic iterative production of this segment.

Developers typically plot a CNC machine’s instructions along three-to-five axes. This precisely delineates the machine’s movement with the material in three-dimensional space.

The fourth and fifth dimensions, when used, are rotational.

To use a CNC machine to create a product out of raw material, a designer must follow a three-stage process. The stages are:

  • Computer-aided design (CAD)
  • Computer-aided manufacturing (CAM)
  • Computer numerical control (CNC)
  1. CAD

Computer-aided design and drafting is the first stage of product development. Designers use CAD programs and workstations to:

  • Create and iterate a design
  • Modify a design according to new parameters
  • Analyze a design’s qualities, specifications, and appeal
  • Optimize a design

CAD programs are used in product lifecycle management processes. They simulate a product digitally.

Once developers create or iterate on a design in a CAD program, they create a vector file. CAD programs export files in a wide range of types. Designers export the file in a format the CAM program can read.

  1. CAM

A computer-aided manufacturing program reads the blueprint for the product or part. Then, it translates the blueprint into a tool-machine code. This code is a G-code.

A G-code, or “G&M code,” is a set of instructions the CNC machine can understand. G-codes tell the machine what to do and how to move. This is the machine’s path set for the design.

Each G-code instructs the machine to execute specific geometric functions. Geometric functions are the commands by which the device alters the raw material into the correct geometric shape. They include particular coordinates.

M-codes initiate and operate the CNC machine’s programmable logic controller.

This commands all CNC machine functions are not directly involved in shaping the material. M-codes tell the machine when to start or stop an action, use coolant, or change a pallet.

A designer then sends a set of G-codes and M-codes to the CNC machine.

  1. CNC

CNC machines interpret and execute sets of G-codes and M-codes. Without CAM software, developers must determine and input the correct set of codes manually.

Designers should always test the code set with an “air cut” before applying it to materials. This way, they can adjust the G-codes without wasting any materials.

Conclusion

A CNC machine is one of the most effective, useful subtractive manufacturing options. It accelerates the design prototyping process in conjunction with CAD and CAM software. It also enables precision design and is widely used in the Medical Industry.

You can also scale faster. CNC machines enable designers to produce more custom products for m

Hot this week

Avery Dennison Medical Introduces Ipdated SilFoam Lite: Sustainability, MDR Certification & Performance Improvements

The newly enhanced SilFoam Lite delivers superior efficiency and reliability, bringing improved fluid handling capabilities and improved tack. These improvements make the product ideal for customers seeking quality, high-performance solutions in wound care notes Avery Dennison Medical.

Voluntary Recall Notifying Medtronic Insulin Pump Users of Potential Risks of Shortened Pump Battery Life

Medtronic plc voluntarily issued a field action starting on July 31, 2024, notifying global customers of its MiniMed™ 600 series or 700 series insulin pumps to follow their pump's built-in alerts and alarms for battery status and to contact Medtronic if they observe changes in the battery life of their pump

Medtronic Expands AiBLE Spine Surgery Ecosystem with New Technologies and Siemens Healthineers Partnership

New advancements in the AiBLE Spine Surgery ecosystem build upon the company's commitment to procedural innovation and execution

Axlab, Danish Medtech Pioneer, expands to US with Advanced Robotic Tissue Sectioning for Pathology Laboratories

Kris Rokke, National Sales Director for Axlab in the US. "My team and I are extremely excited and honored about this unique opportunity to also offer this advanced technology to labs across the US and thus contribute to the pathology labs of tomorrow."

Spartan Medical Broadens Single-Use Sterile Instrument Portfolio to Improve Outcomes, Increase Efficiency, and Generate Cost Savings

Spartan Medical products portfolio of single-use, sterile med tech includes micro and minor surgical convenience kits, kerrison rongeurs, spinal and general surgical retractors, dural repair kits, synthetic biologics, and a wide range of orthopedic pre-sterilized implants and devices.